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Abstract

In this paper, we consider the three-dimensional Schrödinger operator with a
periodic, relative to a lattice � of R

3, potential q. We construct a set D of
trigonometric polynomials such that

(a) D is dense in Ws
2 (R3/�), where s > 3, in the C

∞-topology,
(b) any element q of the set D can be determined constructively and uniquely,

modulo inversion and translation q(x) → q(−x), q(x) → q(x+τ), where
τ ∈ R

3, from the given Bloch eigenvalues of the Schrödinger operator with
the potential q.

PACS numbers: 02.30.Jr, 02.30.Tb, 02.30.Zz

1. Introduction

We investigate the inverse problem for the three-dimensional Schrödinger operator L(q)

generated in L2(R
3) by the differential expression

l(u) = −�u + q(x)u, where x ∈ R
3,

with a real periodic, relative to a lattice � of R
3, potential q(x). Let ω1, ω2, ω3 be a basis of

the lattice � and

F = {c1ω1 + c2ω2 + c3ω3 : ck ∈ [0, 1), k = 1, 2, 3}
be a fundamental domain R

3/� of �. The spectrum of L(q) is the union of the spectra of
operators Lt(q) for t ∈ F ∗ generated in L2(F ) by the expression l(u) and the conditions

u(x + ω) = ei〈t,ω〉u(x), ∀ω ∈ �,

where F ∗ is the fundamental domain of the lattice �, � is the lattice dual to � and 〈., .〉 is
the inner product in R

3. The eigenvalues �1(t) � �2(t) � · · · of Lt(q) are called the Bloch
eigenvalues of L(q). These eigenvalues define the functions �1(t),�2(t), . . . of t that are
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called the band functions of L(q). The aim of this paper is the constructive determination of
the potential q of the three-dimensional Schrödinger operator L(q) from the band functions.

Eskin, Ralston and Trubowitz [2, 3] proved the following result about the inverse problem
of the two-dimensional Schrödinger operator L(q).

For � ⊂ R
2 satisfying the condition: if |ω′ | = |ω | for ω,ω′ ∈ �, then ω′ = ±ω; there

is a set {Mα} of manifolds of potentials such that

(a) {Mα} is dense in the set of smooth periodic potentials in the C
∞-topology,

(b) for each α there is a dense open set Qα ⊂ Mα such that for q ∈ Qα the set of real analytic
q̃ satisfying

Spec(L0(q)) = Spec(L0(̃q))

and the set of q̃ ∈ C
6(F ) satisfying

Spec(Lt (q)) = Spec(Lt (̃q))

for all t ∈ R
2 are finite modulo translations, where Spec(Lt (q)) is the spectrum of Lt(q).

In this paper, we give an algorithm for the unique (modulo inversion and translation)
determination of the potential q of the three-dimensional Schrödinger operator L(q) from the
spectral invariants which were determined constructively in [4] from the given band functions.
As a result, we determine constructively the potential from the given band functions.

To describe the brief scheme of this paper, we begin by recalling the invariants obtained
in [4] which will be used here. Let a be a visible element of �, that is, a is an element of � of
the minimal norm belonging to the line aR, and

qa(x) =
∑
n∈Z

(q(x), ein〈a,x〉)ein〈a,x〉

be the directional (one-dimensional) potential, where (. , .) is the inner product in L2(F ). Let
�a be the sublattice {d ∈ � : 〈d, a〉 = 0} of � in the hyperplane Ha = {x ∈ R

3 : 〈x, a〉 = 0}
and �a be the lattice dual to �a. Let β be a visible element �a and P(a, β) be the plane
containing a, β, and the origin. Define a function qa,β(x) by

qa,β(x) =
∑

c∈(P (a,β)∩�)\aR

c

〈β, c〉z(c)e
i〈c,x〉, (1)

where z(c) ≡ (q(x), ei〈c,x〉) for c ∈ � is the Fourier coefficient of q. In [4], we constructively
determined the following spectral invariants:∫

F

|qa(x)|2dx, (2)

∫
F

|qa,β(x)|2qa(x)dx (3)

from the asymptotic formulae for the band functions of L(q) obtained in [5, 6]. Moreover, in
[4] we constructively determined the invariant∫

F

|qa,β(x)|2(z2(a)ei2〈a,x〉 + z2(−a)e−i2〈a,x〉)dx (4)

when the directional potential qa(x) has the form

qa(x) = z(a)ei〈a,x〉 + z(−a)e−i〈a,x〉. (5)

In this paper, fixing the inversion and translation

q(x) → q(−x), q(x) → q(x + τ), τ ∈ R
3, (6)
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we give an algorithm for the unique determination of the potential q of the three-
dimensional Schrödinger operator L(q) from the invariants (2)–(4). Note that the potential
q can uniquely be determined only by fixing the inversion and translation (6), since
L(q(x)), L(q(−x)), L(q(x + τ)) have the same band functions and hence the same invariants
(2)–(4).

First, we consider the invariants (2)–(4) for the trigonometric polynomials of the form

q(x) =
∑

a∈Q(N,M,S)

z(a)ei〈a,x〉, (7)

where N,M, S are integers,

Q(N,M, S) = {nγ1 + mγ2 + sγ3 : |n| � N, |m| � M, |s| � S}\{0},
and {γ1, γ2, γ3} is a basis of � satisfying 〈γi, ωj 〉 = 2πδi,j . If a = nγ1 + mγ2 + sγ3, then we
write (n,m, s) andz(n,m, s) instead of a and z(a), respectively. For brevity of the notations,
instead of Q(N,M, S) we write Q if it is not ambiguous.

To describe the invariants (2)–(4) for (7), let us introduce some notations. If b ∈
(� ∩ P(a, β))\aR, then the plane P(a, β) coincides with the plane P(a, b). Moreover,
every vector b ∈ (P (a, β) ∩ �)\aR has an orthogonal decomposition (see (20) in [5])

b = sβ + μa, (8)

where s is a nonzero integer, β is a visible element of �a and μ is a real number. Therefore,
for every plane P(a, b), where b ∈ �, there exists a plane P(a, β), where β is as defined by
(8), which coincides with P(a, b).

Notation 1. For every pair {a, b}, where a is a visible element of � and b ∈ �, we denote by
I1(a, b) and I2(a, b) the invariants (3) and (4), respectively, where β is a visible element of
�a defined by (8).

Definition 1. A visible vector a ∈ � is said to be long visible (with respect to Q) if sa ∈ Q if
and only if s = ∓1.

If a is long visible, then the directional potential qa of (7) has the form (5). Therefore the
invariant (2) is

‖qa‖2 ≡ 2|z(a)|2, (9)

and hence the invariant (2) gives the absolute value of the Fourier coefficient z(a). Moreover,
we prove that there exist a lot of pairs {a, b} such that the invariants (9), I1(a, b) and I2(a, b)

give the following simple invariants,

S1(a, b) = Re(z(−a)z(a − b)z(b)), A1(a, b) = cos(−α(a) + α(a − b) + α(b)),

(10)

S2(a, b) = Re(z2(−a)z(a + b)z(a − b)), A2(a, b) = cos(−2α(a) + α(a + b) + α(a − b)),

(11)

where Re(z) is the real part of the complex number z, z(a) = r(a)eiα(a), α(a) ∈ (−π, π ]. In
other words, for these pairs we have the equations,

−α(a) + α(a − b) + α(b) = d(a, b)e(1, a, b)(mod2π), (12)

−2α(a) + α(a + b) + α(a − b) = d(a, b)e(2, a, b)(mod2π), (13)

3
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where e(i, a, b) =: arccos Ai(a, b) for i = 1, 2 are the known numbers belonging to
[0, π ], d(a, b) = ±1, and the equality θ = ϕ(mod2π) means that θ − ϕ = 2kπ for some
integer k.

In section 2, we consider the invariants (3), (4) for the polynomials (7) and find a lot
of pairs {a, b} such that there exist the simple invariants A1(a, b), A2(a, b) corresponding to
these pairs.

In section 3, we give an algorithm for finding the Fourier coefficients z(n,m, s) when
(n,m, s) ∈ B(N,M, S), where

B(N,M, S) = {(n,m, s) ∈ Q(N,M, S) : nms(|n| − N)(|m| − M)(|s| − S) = 0}.
First, we find z(a) when a belongs to the boundary ∂Q̃ of the parallelepiped

Q̃ =: {x = (x1, x2, x3) : |x1| � N, |x2| � M, |x2| � S},
that is, we find the Fourier coefficients z(n,m, s) if either n = N,−N , or m = M,−M , or
s = S,−S. For this, we use the following two observations.

(1) All boundary points of Q̃ except the points of the set

A(N,M, S) = {(±N, 0, 0), (0,±M, 0), (0, 0,±S)} ∪ {(n,m, s) : |n| = |m| = |s| = N}
are long visible, if N,M, S are distinct prime numbers, satisfying N < M < S. Hence,
the absolute value r(a) of z(a) is known by (9).

(2) If a is a boundary point of Q̃, then there are a lot of vectors b such that there exists a
simple invariant A2(a, b) corresponding to the pair {a, b}.
Thus, we can write a lot of equations of type (13) with respect to the argument of the

Fourier coefficients. If d(a, b) and the values of two summands in the left-hand side of (13)
are known, then one can find the value of the third summand. To use these equations, we
need to know the values of the arguments of some Fourier coefficients. Three of them can be
determined by fixing the translation q(x) → q(x + τ), that is, by taking one of the functions
q(x + τ). Namely, in section 3, we prove that the conditions

ατ (N − 1,M, S) = ατ (N,M − 1, S) = ατ (N,M, S − 1) = 0, (14)

ατ (N,M, S) ∈
[

0,
2π

N + M + S − 1

)
, (15)

where

ατ (a) = arg(q(x + τ), ei〈a,x〉),

determine a unique value of τ .
Thus, in section 3, using (14) and a lot of equations of type (13) we determine z(a) when

a ∈ ∂Q̃. Then, using this, we find z(n,m, s), when nms = 0. In section 4, we construct a
dense in Ws

2 (F ), where s > 3, in the C
∞-topology set D of trigonometric polynomials, such

that every q ∈ D can be found by the algorithm given in this paper.
In forthcoming papers, we will give a scheme for the construction of smooth potentials.

2. On the simple invariants

First, let us consider the invariants (3), (4) for the trigonometric polynomial (7).

Definition 2. A pair {a, b}, where a is a long visible element of Q and b ∈ Q, is said to be a
canonical pair of type 1 if 〈b, a − b〉 �= 0 and the following implication holds

{c, a − c} ⊂ (P (a, b) ∩ Q)\aR ⇔ c ∈ {b, a − b}. (16)

4
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A pair {a, b}, where a is a long visible element of Q and b ∈ Q, is said to be a canonical pair
of type 2 if 〈a + b, a − b〉 �= 0 and the following implication holds:

{a + c, a − c} ⊂ (P (a, b) ∩ Q)\aR ⇔ c ∈ {±b}. (17)

Theorem 1. If the potential q(x) has the form (7) and a is a long visible element of Q, then
the invariants I1(a, b), I2(a, b), defined in notation 1, yield the invariants

Re

(
z(−a)

( ∑
c∈G1

g(a, c)z(a − c)z(c)

))
, (18)

Re

(
z2(−a)

( ∑
c∈G2

h(a, c)z(a − c)z(a + c)

))
, (19)

where

g(a, c) = 〈c, c − a〉
(〈c, β〉)2

, h(a, c) = 〈c + a, c − a〉
(〈c, β〉)2

,

G1 and G2 are the set of all c such that {c, a − c} ⊂ (P (a, b) ∩ Q)\aR and
{a + c, a − c} ⊂ (P (a, b) ∩ Q)\aR, respectively.
If {a, b} is a canonical pair of type k, where k = 1, 2, then (18), (19) give the simple

invariants Sk(a, b), Ak(a, b) defined in (10) and (11).

Proof. If the potential q(x) has the form (7), then (1) becomes

qa,β(x) =
∑

c∈(P (a,β)∩Q)\aR

c

〈β, c〉z(c)e
i〈c,x〉. (20)

Using this and (5) in (3), we obtain

I1(a, b) =
∫

F

|qa,β(x)|2qa(x)dx = �1 + �2, (21)

where I1(a, b) is as defined in notation 1,

�1 =
∑

c∈(P (a,b)∩Q)\aR

〈c, c + a〉
〈c, β〉 〈c + a, β〉z(c)z(−a − c)z(a)), (22)

�2 =
∑

c∈(P (a,b)∩Q)\aR

〈c, c − a〉
〈c, β〉 〈c − a, β〉z(c)z(a − c)z(−a)).

Since Q(N,M, S) is symmetric with respect to the origin, the substitution c′ = −c in
(22) does not change �1. Using this substitution in (22) and then taking into account that
z(−b) = z(b), 〈a, β〉 = 0, we obtain

�1 = �2, �1 + �2 = Re(2�2).

This with (21) shows that the invariant I1(a, b) gives the invariant (18).
Replacing a by 2a, in the same way, we obtain the invariant

Re

(
z2(−a)

(∑
c∈G

〈c, c − 2a〉
(〈c, β〉)2

z(2a − c)z(c)

))
(23)

from the invariant I2(a, b), where G is the set of all c such that {c, 2a − c} ⊂ (P (a, b) ∩
Q)\aR, 〈c, c − 2a〉 �= 0. Thus, in (23) replacing c by a + c and using the obvious equality
〈a, β〉 = 0, we get (19).

5
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Now suppose that {a, b} is a canonical pair of type 1. Then it follows from the definition
of G1 and from the definition of the canonical pair of type 1 that G1 = {b, a − b}. Therefore,
(18) has the form

Re

(
z(−a)

( 〈b, b − a〉
(〈b, β〉)2

z(a − b)z(b) +
〈a − b,−b〉
(〈a − b, β〉)2

z(b)z(a − b)

))
.

The invariant S1(a, b) can be obtained from this invariant, because 〈b, b − a〉 = 〈a − b,−b〉
and 〈a, β〉 = 0. The invariant (9) and S1(a, b) imply A1(a, b). In the same way, we obtain the
invariants S2(a, b) and A2(a, b) from (19). �

Now we determine a lot of canonical pairs of types 1 and 2.

Condition 1. Suppose � = Z
3 and z(n,m, s) �= 0 for (n,m, s) ∈ B(N,M, S), where

N,M, S are prime numbers satisfying S > 2M,M > 2N,N � 1.

Proposition 1. Suppose condition 1 holds.

(a) The pair {a, b} is a canonical pair of type 2 in each of the following cases:

(1) a = (N,M − 1, s), b = (0,±1, p), where s + p, s − p ∈ [−S, S], |p | � M − 1.

(2) a = (N,m, S − 1), b = (0, q,±1), where m + q,m − q ∈ [−M,M].
(3) a = (N,m, s), b = (0,±1, p), where m ∈ [−M +1,M −1], s +p, s −p ∈ [−S, S],

s − 2p �∈ [−S, S], (N,m, s) /∈ A(N,M, S) and N2 + m2 − 1 + s2 − p2 �= 0.

(b) The pair {a, b} is a canonical pair of type 1 in each of the following cases:

(1) a = (N,M − 1, s), b = (0,−1, N), S − N < s � S, s �= kN, where k ∈ Z.

(2) a = (N,M, 0), b = (N, 0, S)).

(c) If n and m are the relatively prime nonnegative integers and (n,m, 0) ∈ Q, then

Q ∩ (P ((0,−M,S), (n,m, 0))) = (Q−1 ∪ Q0 ∪ Q1) ∩ Q, (24)

where P((0,−M,S), (n,m, 0)) is the plane passing through (0, 0, 0), (0,−M,S),

(n,m, 0) and Qk = {l(n,m, 0) + k(0,−M,S) : l ∈ Z} for k = −1, 0, 1.

Proof.

(a) The conditions of condition 1 on N,M, S and the conditions of this proposition on
s, p, q,m imply the inequality 〈a +b, a −b〉 �= 0. Now, by definition 2, we need to show
that (17) holds. Let c = (n1,m1, s1) be any vector satisfying

{a + c, a − c} ⊂ (P (a, b) ∩ Q)\aR. (25)

Since, in all of the above cases, the first coordinate of a is N, the implication (25) and the
definition of Q(N,M, S) imply that n1 = 0 for all cases (1)–(3). Hence

c ∈ {(x1, x2, x3) ∈ R
3 : x1 = 0} =: {x1 = 0}. (26)

On the other hand, it follows from (25) that c ∈ P(a, b). Thus, c belongs to the line
intersection of the planes P(a, b) and {x1 = 0}. Since b also belongs to this line and b is a
visible element of �, we have c = kb for some nonzero integer k. Clearly, if k is not ±1,
then either a + c or a − c does not belong to Q(N,M, S), which means that (17) holds.

(b) First let us consider case (1). It is clear that 〈b, a − b〉 = N(s − N) − M �= 0, since N
and M are the distinct prime numbers. Therefore, we need to prove that (16) holds (see
definition 2). Let c = (n1,m1, s1) be any vector satisfying

{c, a − c} ⊂ (P (a, b) ∩ Q)\aR. (27)

6
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If the vector c lies on the plane P(a, b), then the determinant of the matrix with rows a, b

and c is zero. It gives the equality

N(s1 + m1N) = n1(s + (M − 1)N). (28)

Since N is a prime number and s + (M − 1)N is not a multiple of N, we have n1 = kN

for k ∈ Z. Then c = (kN,m1, s1). The set Q(N,M, S) contains the vector c only in the
following there cases: k = 0, k = 1, k = −1. In the case k = 0 we have n1 = 0. Then
from (28) one observes that s1 = −Nm1, that is, c = m1(0, 1,−N), where m1 �= 0. If
m1 �= −1, i.e., c �= b, then the conditions S − N < s � S of the proposition imply that
a − c �∈ Q. Thus, in the case k = 0, we obtain that c = b. If k = −1, then one can
readily see that c = (−N,m1, s1), a − c �∈ Q. It remains to consider the case k = 1, that
is, n1 = N . In this case, we use the following obvious implication:

a ∈ {xk = n}, b ∈ {xk = 0} ⇒ P(a, b) ∩ {xk = 0} = bR,

P (a, b) ∩ {xk = n} = a + bR. (29)

Since

c = (N,m1, s1) ∈ {x1 = N}, a ∈ {x1 = N},
b ∈ {x1 = 0}, c ∈ P(a, b)\aR

(see (27)), the relation (29) yields that c ∈ a + bR. Moreover, c = a + kb for some
nonzero integer k, since b is the visible element of �. Using this and taking into account
that a + kb, where a = (N,M − 1, s), b = (0,−1, N), lies in Q if and only if k = −1,

we obtain c = a − b.

Now consider case (2). First, let us prove that in this case the plane P(a, b) contains only
the vectors ±(N,M, 0),±(N, 0, S),±(0,M,−S) of Q. In fact, every element (n,m, s)

of this plane satisfies the equation

S(nM − mN) = sNM. (30)

First, let us consider the case s = 0, i.e., the case nM = mN . Since N and M are
the distinct prime numbers and −N � n � N,−M � m � M , it follows that either
n = ±N,m = ±M or n = m = 0. Now consider the case s �= 0. Then the right-hand
side of (30) is a multiple of S. Therefore taking into account that S is a prime number
satisfying condition 1 and −S � s � S, we have s = ±S. This together with (30) gives
the relation (n±N)M = mN. From this relation, one observes that either n = ∓N,m = 0
or n = 0,m = ±M . Thus,

P(a, b) ∩ Q = {±(N,M, 0),±(N, 0, S),±(0,M,−S)}.
Using this and taking into account that a = (N,M, 0), b = (N, 0, S), we obtain

(P (a, b) ∩ Q)\aR = {±b,±(a − b)}. (31)

Now suppose that c is a vector satisfying (27). If c = −b, then

a − c = a + b /∈ (P (a, b) ∩ Q)\aR

due to (31). Similarly, if c = −(a − b), then

a − c = 2a − b /∈ (P (a, b) ∩ Q)\aR

again due to (31). Therefore (27) and (31) imply the proof of (16).
(c) The relation (n1,m1, s1) ∈ P((0,−M,S), (n,m, 0)) holds if and only if

S(mn1 − m1n) = s1Mn.

If (mn1 − m1n) = 0, then s1 = 0. If (mn1 − m1n) �= 0, then s1 = ±S, since S is prime
satisfying condition 1, and (n,m, 0) ∈ Q. Hence, (n1,m1, s1) belongs either to {x3 = 0}
or to {x3 = S} or to {x3 = −S}. Therefore (24) follows from (29). �

7
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3. Finding z(a) when a ∈ B(N ,M ,S)

First, we prove the following simple theorem.

Theorem 2. There exists a unique value of τ ∈ F such that the conditions (14), (15) hold.

Proof. It follows from (7) and from the definition of F that

ατ (a) = 〈a, τ 〉 + α(a), τ = c1ω1 + c2ω2 + c3ω3, (32)

where ατ (a) is as defined in (15), and

α(a) = α0(a) = arg(q(x), ei〈a,x〉), ck ∈ [0, 1), k = 1, 2, 3.

Using this, one observes that (14) is equivalent to the following system of equations:

2π((N − 1)c1 + Mc2 + Sc3) = −α(N − 1,M, S)(mod2π),

2π(Nc1 + (M − 1)c2 + Sc3) = −α(N,M − 1, S)(mod2π),

2π(Nc1 + Mc2 + (S − 1)c3) = −α(N,M, S − 1)(mod2π).

The determinant of the coefficient matrix of this system with respect to the unknowns c1, c2, c3

is 8π3(N + M + S − 1). Therefore this system has a solution. Let c1, c2, c3 and c′
1, c

′
2, c

′
3 be

different solutions of this system corresponding to the different values of the right-hand side.
Introduce the unknowns x = c1 − c′

1, y = c2 − c′
2, z = c3 − c′

3. It is clear that x, y, z are the
solution of the system

(N − 1)x + My + Sz = k, Nx + (M − 1)y + Sz = m, Nx + My + (S − 1)z = n,

where k,m, n are integers. The solutions of this system has the form

x = f (k,m, s)

N + M + S − 1
, x = g(k,m, s)

N + M + S − 1
, x = h(k,m, s)

N + M + S − 1
,

where f (k,m, s), g(k, m, s), h(k,m, s) are integers and f (1, 1, 1) = g(1, 1, 1) = h(1, 1, 1)

= 1. Therefore, the above system of equations with respect to the unknowns c1, c2, c3 ∈ [0, 1)

has N + M + S − 1 solutions (c1,l , c2,l , c3,l) satisfying

cj,l+1 − cj,l = 1

N + M + S − 1
, j = 1, 2, 3 and l = 1, 2, . . . , N + M + S − 2.

Thus using (32), the equality 〈ωi, γj 〉 = 2πδi,j and taking into account the notations
z(nγ1 + mγ2 + sγ3) =: z(n,m, s), z(a) = r(a)eiα(a), α(a) ∈ [−π, π), one observes that

there exist τ1, τ2, . . . , τN+M+S−1 such that

τl+1 − τl = ω1 + ω2 + ω3

N + M + S − 1
, ατl+1(N,M, S) − ατl

(N,M, S) = 2π

N + M + S − 1
.

This implies that there exists a unique value of τ satisfying (14), (15). �

By theorem 2, without loss of generality, it can be assumed that

α(N − 1,M, S) = α(N,M − 1, S) = α(N,M, S − 1) = 0. (33)

On the other hand, the invariant (9) determines the modulus of

z(N − 1,M, S), z(N,M − 1, S), z(N,M, S − 1), (34)

since the vectors (N − 1,M, S), (N,M − 1, S), (N,M, S − 1) are the long visible elements
of Q(N,M, S). Therefore, the Fourier coefficients in (34) are known.

In this section, using theorem 1, proposition 1 and taking into account that the Fourier
coefficients in (34) are known, we find all the Fourier coefficients z(a) for a ∈ B(N,M, S),

8
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where B(N,M, S) is as defined in section 1. To formulate these results, we use the following
remark.

Remark 1. Let a1, a2, . . . , an be nonzero elements of �. Assign to every polynomial∑
k=1,2,...,n

z(ak)e
i〈ak,x〉 (35)

the vector (x(a1), y(a1), x(a2), y(a2), . . . , x(an), y(an)) of R
2n, where x(ak) and y(ak) are

the real and imaginary parts of the Fourier coefficient z(ak). There exists one-to-one
correspondence between the polynomials of the form (35) and elements of R

2n. Farther,
we assume the following types of conditions on the Fourier coefficients.

Type 1. Assume that z(aj ) �= 0 for some index j. In other words, we eliminate the finite
number of subspaces z(aj ) = 0 of dimension 2n − 2.

Type 2. Assume that some linear combinations of the invariants e(i, a, b) defined in (12),
(13) are not 0(modπ).

Type 3. Assume that some homogenous polynomials depending on
x(a1), y(a1), x(a2), y(a2), . . . are not zero.
These conditions mean that we eliminate some sets of dimensions less than 2n. In any

case, the 2n-dimensional measures of the eliminated sets are zero. We named these conditions
as zero measure conditions. This means that we consider almost all polynomials of the form
(35). In order to avoid eclipsing the essence by technical details, we prefer to formulate the
theorems for almost all the potentials of the form (35) instead of listing the eliminated sets.
Note that the separated potentials show that, to determine the potential uniquely (modulo
inversion and translation) from spectral invariants, it is necessary to eliminate some of these
subspaces. Thus, the sufficient conditions to solve the inverse problem by these methods are
close to the necessary conditions.

First, let us consider

z2(N,M − 1, l), z(N,M, l), z(N,M − 2, l), ∀l. (36)

Theorem 3. Suppose condition 1 holds. Then the spectral invariants (9)–(11) determine
constructively and uniquely, modulo inversion and translation (6), the numbers in (36) for
almost all the potentials of the form (7).

Proof. Since the vectors (N,M, l), (N,M −1, l), (N,M −2, l) are long visible, the absolute
values of the numbers in (36) are known. Therefore, we need to find

2α(N,M − 1, l), α(N,M, l), α(N,M − 2, l), ∀l. (37)

To find (36) for l = S, S − 1, S − 2, we use equation (13) for the following pairs:

P1 = {(N,M, S − 1), (0, 0, 1)}, P2 = {(N,M − 1, S), (0, 1, 0)},
P3 = {(N,M − 1, S − 1), (0, 1,−1)}, P4 = {(N,M − 1, S − 1), (0, 1, 0)},
P5 = {(N,M − 1, S − 1), (0, 0, 1)}, P6 = {(N,M − 1, S − 1), (0, 1, 1)},
P7 = {(N,M − 2, S − 1), (0, 0, 1)} and P8 = {(N,M − 1, S − 2), (0, 1, 0)}.
Note that it follows from proposition 1(a) that the pairs P1, P2, . . . , P8 are the canonical

pairs of type 2. Therefore, by theorem 1, we have the invariant A2(a, b) and hence the equation
of type (13) corresponds to each of the pairs P1, P2, . . . , P8. For simplicity of the notation,
in (13) for Pi, instead of e(2, a, b) and d(a, b) we write ei and di respectively. Denote

9
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α(N,M, S) by α. Using this notation and (33) one observes that the equality (13) for the pairs
P1, P2, . . . , P8 has the form

α + α(N,M, S − 2) = d1e1(mod2π),

α + α(N,M − 2, S) = d2e2(mod2π),

−2α(N,M − 1, S − 1) + α(N,M, S − 2) + α(N,M − 2, S) = d3e3(mod2π),

−2α(N,M − 1, S − 1) + α(N,M − 2, S − 1) = d4e4(mod2π), (38)

−2α(N,M − 1, S − 1) + α(N,M − 1, S − 2) = d5e5(mod2π),

−2α(N,M − 1, S − 1) + α + α(N,M − 2, S − 2) = d6e6(mod2π),

−2α(N,M − 2, S − 1) + α(N,M − 2, S) + α(N,M − 2, S − 2) = d7e7(mod2π),

−2α(N,M − 1, S − 2) + α(N,M, S − 2) + α(N,M − 2, S − 2)) = d8e8(mod2π).

From the first and second equations of (38) we obtain

α(N,M, S − 2) = (d1e1 − α)(mod2π), α(N,M − 2, S) = (d2e2 − α)(mod2π). (39)

These equalities with the third equation of (38) yield

−2α(N,M − 1, S − 1) = (d3e3 − d2e2 − d1e1 + 2α)(mod2π).

Now using the last equality in the fourth, fifth and sixth equations of (38), we get

α(N,M − 2, S − 1) = (d4e4 + d2e2 + d1e1 − d3e3 − 2α)(mod2π),

α(N,M − 1, S − 2) = (d5e5 + d2e2 + d1e1 − d3e3 − 2α)(mod2π), (40)

α(N,M − 2, S − 2) = (d6e6 + d2e2 + d1e1 − d3e3 − 3α)(mod2π).

Writing the obtained value for α(N,M − 2, S − 1), α(N,M − 2, S), α(N,M − 2, S − 2),

α(N,M − 1, S − 2) into the seventh and eighth equations of (38) we obtain

d7e7 − (d6e6 − 2d4e4 + d3e3 − d1e1) = 0(mod2π),

d8e8 + 2d5e5 + d2e2 = d6e6 + d3e3(mod2π). (41)

Introduce the notations V = (d1, d3, d4, d6, d7), U = (d8, d5, d2),

f1(V ) ≡ d7e7 − (d6e6 − 2d4e4 + d3e3 − d1e1), f2(U) ≡ d8e8 + 2d5e5 + d2e2.

In these notations, (41) has the form

f1(V ) = 0(mod2π), f2(U) = d6e6 + d3e3(mod2π). (42)

Since di is either 1 or −1, the vector V takes 32 distinct values

V1, V2, . . . , V16 and − V1,−V2, . . . ,−V16.

Then the function f1(V ) takes 32 values

f1(V1), f1(V2), . . . , f1(V16) and f1(−V1), f1(−V2), . . . , f1(−V16).

Similarly, the vector U takes eight distinct values U1, U2, . . . , U8, and the function f2(U)

takes eight values f2(U1), f2(U2), . . . , f2(U8). Suppose

f1(Vk) − f1(Vj) �= 0(mod2π)

for k �= j . Then there are only one index k and two values Vk,−Vk of V satisfying

f1(Vk) = −f1(−Vk) = 0(mod2π).

On the other hand, the arguments of the Fourier coefficients of q(x) and q(−x) take the
opposite values. Therefore, for fixing the inversion q(x) −→ q(−x), we take one of these
two remaining values Vk,−Vk of V . Thus, one can find the signs of d1, d3, d4, d6, d7 from the
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first equality in (42). Since the signs of d3 and d6 are already known, we find d8, d5, d2 from
the second equality in (42) if

d6e6 + d3e3 �= 0(mod2π) and f2(Uk) − f2(Uj ) �= 0(mod2π).

Thus, the numbers d1, d2, . . . , d8 are known. Since e1, e2, . . . , e8 are known invariants, the
numbers in (37) for l = S, S − 1, S − 2 can be expressed in terms of α. Moreover, we have
the formulae (see (39), (40))

−2α(N,M − 1, S − p) = E1 + 2pα,

α(N,M, S − p) = E2 − (p − 1)α, (43)

α(N,M − 2, S − p) = E3 − (p + 1)α

for p = 0, 1, 2, where by Ei for i = 1, 2, . . . we denote the linear combinations of e1, e2, . . .

with known coefficients.
Now let us consider (37) for all l. For this, we use equation (13) for the canonical pairs

P9(s) = {(N,M − 1, s), (0, 1, 1)}, P10(s) = {(N,M − 1, s − 1), (0, 1, 0)},
P11(s) = {(N,M − 1, s), (0, 1,−1)} of type 2 (see proposition 1(a)). Equations (13) for

these pairs are

−2α(N,M − 1, s) + α(N,M, s + 1) + α(N,M − 2, s − 1) = d9(s)e9(s)(mod2π),

−2α(N,M − 1, s − 1) + α(N,M, s − 1) + α(N,M − 2, s − 1) = d10(s)e10(s)(mod2π),

−2α(N,M − 1, s) + α(N,M, s − 1) + α(N,M − 2, s + 1) = d11(s)e11(s)(mod2π), (44)

where d9(s), d10(s), d11(s) are either 1 or −1. Using the equations

−2α(N,M − 1, s) + α(N,M, s + 2) + α(N,M − 2, s − 2) = d12e12(mod2π),

−2α(N,M − 1, s) + α(N,M, s − 2) + α(N,M − 2, s + 2) = d13e13(mod2π),

which are equation (13) for the pairs {(N,M − 1, s), (0, 1, 2)}, {(N,M − 1, s), (0, 1,−2)},
and arguing as in the determinations of the signs of d8, d5, d2, one can find the signs of
d9(s), d10(s), d11(s). Then from equations (44), we can find (37) for l = s −1 if (37) is known
for l = s + 1, s. Moreover, as we proved above, they satisfy the formulae (43) for p = 0, 1, 2.
The formulae in (43) for all p can easily be obtained from (44) by induction. In the same way,
we obtain the formulae

α(N,M − p, S) = E4 − (p − 1)α, α(0,M,−S) = E5 − (2S + N − 1)α. (45)

By proposition 1(b), the pair {(N,M, 0), (N, 0, S)} is a canonical pair of type 1. Hence, using
the invariant A1(a, b) (see (10)) for a = (N,M, 0), b = (N, 0, S) and formulae (43), (45),
we get the value of

cos((N + M + S − 1)α + E6).

Similarly, using the pair {(N,M, 0), (N, 0,−S)}, we find

cos((N + M + S − 1)α + E7).

By these two values of the cosine, we find (N +M +S −1)α under condition E6 �= E7(modπ).

This with (15) gives us the unique value of α, and we find the numbers in (37) under some
zero measure conditions in the sense of remark 1. �

To find the Fourier coefficient z(a) for all a ∈ ∂Q̃, where ∂Q̃ is as defined in section 1,
we use the following lemmas.
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Lemma 1. Let {a1, b} and {a2, b}, where a1 and a2 are the long visible elements of
Q(N,M, S), be the canonical pairs of type 1. Then the invariants

S1(a1, b) = Re(z(−a1)z(a1 − b)z(b)), S1(a2, b) = Re(z(−a2)z(a2 − b)z(b)), (46)

defined in (10), uniquely determine z(b) if z(ak − b) and z(ak) for k = 1, 2 are known and

Im(z(a1 − b)z(a1)z(−(a2 − b))z(−a2)) �= 0. (47)

Proof. The equations in (46) are a system of the linear equations with respect to the unknowns
x(b), y(b), and the inequality (47) shows that the determinant of the coefficient matrix of this
system is not zero. Therefore (46) has a unique solution. �

Lemma 2. Suppose c ∈ Q has two different decompositions

c = a1 + b1, c = a2 + b2, where {a1, b1, a2, b2} ⊂ QN,

such that z2(ak) and z(ak − bk) for k = 1, 2 are known and

Im(z2(a1)z(a1 − b1)z
2(−(a2))z(−(a2 − b2))) �= 0. (48)

If {a1, b1} and {a2, b2}, where a1 and a2 are the long visible elements of Q(N,M, S), are the
canonical pairs of type 2, then the invariants

S2(ak, bk) = Re(z2(−ak)z(ak − bk)z(ak + bk)),

defined by (11), where k = 1, 2, uniquely determine z(c).

The proof is the same as the proof of lemma 1.

Theorem 4. Suppose that condition 1 holds. Then the spectral invariants (9)–(11) and
(19) determine constructively and uniquely, modulo inversion and translation (6), the Fourier
coefficients z(a) for all a ∈ ∂Q̃ for almost all the potentials of the form (7).

Proof. Step 1. In this step, we find the Fourier coefficient z(N,M − 1, s) for s = S − 2p.

Since z2(N,M − 1, s) is known due to theorem 3, z(N,M − 1, s) is known up to the sign,

z(N,M − 1, s) = ksvs,

where vs is known and ks is either 1 or −1. Moreover, kS is known (see (33)). To find ks for
s = S − 2p, where p = 1, 2, . . . , S − 1 we use the invariant (19) for the pair {a, b}, where
a = (N,M − 1, S − p), b = (0, 0, 1). To write the invariant (19) for this pair, we need to
determine the set G2, defined in theorem 1, for this pair. By definition, G2 is the set of all c
such that

{a + c, a − c} ⊂ (P (a, b) ∩ Q)\aR.

Clearly, if this inclusion holds, then c has the form (0,m, s). Hence, c belongs to the line
intersection of the planes P(a, b) and {x1 = 0}. By (29) this line is bR. It means that
c = (0, 0, q) for some integer q. Thus, G2 is the set of all (0, 0, q) such that

{(N,M − 1, S − p − q), (N,M − 1, S − p + q)} ⊂ Q.

This inclusion implies that −p � q � p. Therefore the invariant (19) for the pair
{(N,M − 1, S − p), (0, 0, 1)} has the form

Re

(
z2(N,M − 1, S − p)

p∑
q=−p

〈(N,M − 1, S − p − q), (N,M − 1, S − p + q)〉
〈(N,M − 1, S − p), β〉 hqVq

)
,

(49)
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where Vq =: vS−p+qvS−p−q is the known number and hq =: kS−p+qkS−p−q is either 1 or −1.
Let

H = (h−p, h−p+1, . . . , hp)

and f be a function taking H to (49). Assume that f takes distinct nonzero values at distinct
points. Then (49) determine

hq = kS−p+qkS−p−q (50)

if 〈(N,M − 1, S − p − q), (N,M − 1, S − p + q)〉 �= 0. Thus (50) is known. Taking p = q

in (50), we find kSkS−2p. Since kS is known (see (33)), we find kS−2p if

A(p) =: 〈(N,M − 1, S − 2p), (N,M − 1, S)〉 �= 0.

Since the equation A(p) = 0 may have only one integer root p0, we have defined kS−2p

for all p except p = p0. It is clear that there exist p and q such that p0 = p + q and
〈(N,M −1, S −p−q), (N,M −1, S −p +q)〉 �= 0. Therefore, using (50), we define kS−p0 ,

since kS−p−q is known.
Step 2. To find z(N,M − 1, S − 2p + 1), we use lemma 1. Let

a1 = (N,M − 1, S), a2 = (N,M − 1, S − 2), b = (0,−1, N).

Without loss of generality, it can be assumed that S − 2 �= kN . Otherwise, we consider
a2 = (N,M − 1, S − 4). By proposition 1(b), the pairs {a1, b} and {a2, b} are the canonical
pairs of type 1. Therefore applying lemma 1 and taking into account that z(ak − b) and z(ak)

for k = 1, 2 are known due to theorem 3 and step 1, we find z(b). Now, without loss of
generality, we assume that S − 1 �= kN . Otherwise we consider S − 3 instead of S − 1. By
proposition 1(b), the pair {a, b}, where a = (N,M − 1, S − 1) and b = (0,−1, N), is the
canonical pair of type 1. Hence using the invariant (10) and taking into account that z(b) and
z(a − b) are known, we determine the sign of kS−1. From the knowledge of the sign of kS ,
we have found the sign of kS−2p by (49). In the same way, from the knowledge of the sign of
kS−1, we find the sign of kS−2p−1. Thus, we have found z(N,M − 1, s) for all s.

Step 3. Now using lemma 2, we find z(N,m, s) for all m, s by induction. They were
found in theorem 3 and in steps 1 and 2 of this theorem for m = M,M −1,M −2. Let us find
z(N,m, s) assuming that we have already found z(N, q, s) for q = M,M − 1, . . . , m + 1.
Clearly, for any s ∈ [S,−S] there are different pairs (s1, p1), (s2, p2) such that

sk + pk = s; sk, pk, sk − pk ∈ [S,−S]; sk − 2pk �∈ [−S, S];
N2 + m2 − 1 + s2

k − p2
k �= 0

sk �= ±N, sk − pk �= ±N for k = 1, 2. Then, by proposition 1(a) (see case 3), the pair
{ak, bk)} for k = 1, 2, where ak = (N,m + 1, sk) and bk = (0,−1, pk), is the canonical pair
of type 2. Moreover, z(ak), z(ak − bk) are known by the assumption of the induction. Hence
the application of lemma 2 yields z(N,m, s). Interchanging the roles of the first and second
coordinates and then the roles of the first and third coordinates, we find z(a) for all a ∈ ∂Q̃

under some zero measure conditions in the sense of remark 1. �

Theorem 5. Suppose condition 1 holds. Then the spectral invariants (9)–(11), (18) determine
constructively and uniquely, modulo inversion and translation (6), the Fourier coefficients

z(n,m, 0), z(n, 0, s), z(0,m, s)

for all n,m, s and for almost all the potentials of the form (7).

Proof. Let us find z(n,m, 0). Since (n,m, 0) �= (0, 0, 0) and z(−a) = z(a), without
loss of generality, it can be assumed that m > 0, n � 0. Moreover, for the simplicity

13



J. Phys. A: Math. Theor. 42 (2009) 375201 O A Veliev

of the notations, it can be assumed that n,m are relatively prime numbers, since we find
z(l(n,m, 0)) for all l. To find z(n,m, 0), we use the invariant (18) for the pair {aq, (n,m, 0)},
where aq = (0,−M,S) + q(n,m, 0). To write the invariant (18) for this pair, we need to
investigate the set G1, defined in theorem 1, for this pair. By the definition, G1 is the set of all
c such that

{c, aq − c} ⊂ (P (aq, (n,m, 0)) ∩ Q)\aqR.

Using this, the obvious equality P(aq, (n,m, 0)) = P((0,−M,S), (n,m, 0)) and (24), we
obtain that G1 is the set of all c such that

{c, aq − c} ⊂ ((Q−1 ∪ Q0 ∪ Q1) ∩ Q)\aqR.

If c ∈ Q−1 then

aq − c = (q − l)(n,m, 0) + (0,−2M, 2S) /∈ Q.

If c ∈ Q0, then c = l(n,m, 0) for some l. Let p be the greatest integer satisfying
pn � N,pm � M . Then l(n,m, 0) ∈ Q if and only if −p � l � p. Moreover

aq − c = (0,−M,S) + (q − l)(n,m, 0) ∈ Q1.

Similarly, if c ∈ Q1, i.e., c = (0,−M,S)+(q−l)(n,m, 0) for some l, then aq−c = l(n,m, 0).
Therefore, the invariant (18) for the pair {aq, (n,m, 0)} has the form

Rez(−(aq))
∑

l

clz(aq − l(n,m, 0))z(l(n,m, 0)), (51)

where q = 1, 2, . . . , p and cl = g(aq, l(n,m, 0)). Similarly, the invariant (18) for the pair
{bq, (n,m, 0)}, where bq = (0,M, S) + q(n,m, 0), has the form

Rez(−(bq))
∑

l

dlz(bq − l(n,m, 0))z(l(n,m, 0)), (52)

where q = −1,−2, . . . ,−p and dl = g(bq, l(n,m, 0)). Since the Fourier coefficients

z(aq), z(aq − l(n,m, 0)), z(bq), z(bq − l(n,m, 0))

are known due to theorem 4, we have 2p linear form (see (51) and (52)) with respect
to 2p unknowns x(n,m, 0), x(2(n,m, 0)), . . . , x(p(n,m, 0)) and y(n,m, 0), y(2(n,m, 0)),

. . . , x(q(n,m, 0)). Since the invariant (18) is a known number, (51) and (52) give 2p linear
equations with respect to these unknowns. One can find these unknowns if the determinant
T (2p) of the coefficient matrix of the system of these linear equations is not zero. Let us show
that this determinant is not identically zero. Let x(l(n,m, 0)) be the lth and y(l(n,m, 0)) be
the (p + l)th unknown of the system, where l = 1, 2, . . . , p. Similarly, let the lth equation of
the system be given by the lth linear form of (51) and the (p + l)th equation of the system be
given by the lth linear form of (52). Then T (2p) can be written in the form∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 . . . a1,p b1,1 b1,2 . . . b1,p

a2,1 a2,2 . . . a2,p b2,1 b1,2 . . . b2,p

. . . . . . . . . . . . . . . . . . . . . . . .

ap,1 ap,2 . . . ap,p bp,1 bp,2 . . . bp,p

c1,1 c1,2 . . . c1,p d1,1 d1,2 . . . d1,p

c2,1 c2,2 . . . c2,p d2,1 d2,2 . . . d2,p

. . . . . . . . . . . . . . . . . . . . . . . .

cp,1 cp,2 . . . cp,p dp,1 dp,2 . . . dp,p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, where

aq,l = x(aq)(clx(aq−l ) + c−lx(aq+l )) + y(aq)(cly(aq−l ) + c−ly(aq+l )),

bq,l = x(aq)(cly(aq−l ) − c−ly(aq+l )) + y(aq)(clx(aq−l ) − c−lx(aq+l )),

cq,l = x(b−q)(dlx(b−q−l ) + d−lx(b−q+l )) + y(b−q)(dly(b−q−l ) + d−ly(b−q+l )),

dq,l = x(b−q)(dly(b−q−l ) − d−ly(b−q+l )) + y(b−q)(dlx(b−q−l ) − d−lx(b−q+l )).
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The qth and (p+q)th diagonal elements aq,q and dq,q of the determinant contain the summands
x(aq)cqx(a0) and x(b−q)d−qy(b0), respectively. The nondiagonal elements do not contain
these summands. Therefore, the determinant T (2p) contain the summand

�q=1,2,...,p(cqx(aq)x(a0)d−qx(b−q)y(b0))

which cannot be canceled by the other summand of the determinant. Moreover, the
multiplicands cq and d−q are not zero since

〈q(n,m, 0), aq − q(n,m, 0)〉 = −qmM �= 0,

〈q(n,m, 0), bq − q(n,m, 0)〉 = qmM �= 0.

Therefore, the zero set of the determinant T (2p) of the coefficient matrix of the system has zero
measure. Thus, solving this system we find z(n,m, 0) under some zero measure conditions in
the sense of remark 1. In the same way, we find z(n, 0, s) and z(0,m, s). �

4. Inverse problem in a dense set

In this section, we construct a dense in Ws
2 (F ), where s > 3, in C

∞-topology set D of
trigonometric polynomials and prove that one can determine constructively and uniquely
(module translation (6)) the potential q ∈ D from the spectral invariants (2)–(4). For this, we
use the following condition.

Condition 2. Suppose z(n,m, s) �= 0 for (n,m, s) ∈ C(
√

N), where

C(
√

N) = {(n,m, s) : 0 < |n | < 1
2

√
N, 0 < |m | < 1

2

√
N, 0 < |s | < 1

2

√
N}

and z(n,m, s) = 0 for (n,m, s) ∈ (Q(N,M, S))\(C(
√

N) ∪ B(N,M, S)).

To find z(n,m, s) for (n,m, s) ∈ C(
√

N) we use the following proposition.

Proposition 2. If condition 2 holds, then the invariant (18) for
a ∈ B(N,M, S), b ∈ C(

√
N) yields the invariant

Re

(
z(−a)

(∑
c∈G

g(a, c)z(a − c)z(c)

))
, (53)

where g(a, c) = 〈c,c−a〉
(〈c,β〉)2 ,G is the set of all c such that

{c, a − c} ⊂ ((P (a, b) ∩ Q)\aR) ∩ (C(
√

N) ∪ B(N,M, S)), (54)

and at least one of the points c and a − c belongs to C(
√

N).

Proof. By condition 2, if {c, a − c} is not a subset of C(
√

N) ∪ B(N,M, S), then
z(a − c)z(c) = 0. Therefore, it follows from the definition of G1 that the summation in
(18) is taken over all c satisfying (54). On the other hand, if both c and a − c belong to
B(N,M, S), then the summand z(−a)g(a, c)z(a − c)z(c) of (18) is known due to theorems
4 and 5. Therefore, (18) implies the invariant (53), if condition 2 holds. �

Theorem 6. The invariants (9)–(11) and (53) determine constructively and uniquely, modulo
inversion and translation (6), the Fourier coefficients z(n,m, s), where (n,m, s) ∈ C(

√
N),

for almost all the potentials of the form (7) satisfying conditions 1 and 2.

Proof. To find z(n,m, s) for (n,m, s) ∈ C(
√

N), we use the invariant (53) for the pair
a = (−N + n, 0, j), b = (n,m, s), where j is a prime number satisfying

M < j � S −
√

N. (55)
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Since n �= 0 and z(−n,−m,−s) = z(n,m, s), without loss of generality, it can be assumed
that n > 0. To use (53), we prove that

G = {b, a − b}, where b = (n,m, s), a − b = (−N,−m, j − s), (56)

where G is as defined in proposition 2. Since the inclusion {b, a − b} ⊂ G is obvious, we
need to prove that G ⊂ {b, a − b}. For this, we use the following inequalities

0 < |n |, |m |, |s | < 1
2

√
N, 2N < M < j � S − √

N, (57)

which follows from (55), condition 1 and the assumption (n,m, s) ∈ C(
√

N). Thus, to prove
(56) we need to show that any element c = (n1,m1, s1) of G is either b or a − b. First let us
prove that n1m1s1 �= 0. Indeed, using the definition of C(

√
N) and the inequalities in (57)

one can readily verify that the following three statements are true.

1. If n1 = 0, then (n1,m1, s1) /∈ C(
√

N), a − c = (−N + n,−m1, j − s1) /∈ C(
√

N).

2. If m1 = 0, then (n1,m1, s1) /∈ C(
√

N), a − c = (−N + n − n1, 0, j − s1) /∈ C(
√

N).

3. If s1 = 0, then (n1,m1, s1) /∈ C(
√

N), a − c = (−N + n − n1,−m1, j) /∈ C(
√

N).

Therefore, the relation (n1,m1, s1) ∈ G and the definition of G (see proposition 2) imply
that n1m1s1 �= 0. Since c ∈ G we have c ∈ P(a, b) ∩ Q. The point c = (n1,m1, s1) belongs
to the plane P(a, b) if and only if

(n − N)(ms1 − sm1) = j (mn1 − nm1). (58)

This equation holds in the following two cases.
Case 1. (ms1 − sm1) = 0. Then (mn1 − nm1) = 0. These two equalities imply that the

point c = (n1,m1, s1) lies on the line (n,m, s)R. Therefore we have

c = (n1,m1, s1) = k(n0,m0, s0), (n,m, s) = k0(n0,m0, s0), (59)

where k and k0 are the integers, and (n0,m0, s0) is a visible element of Z
3 lying in (n,m, s)R.

Moreover, it follows from (57) and from the above relation n1m1s1 �= 0 that

0 < |n0 |, |m0 |, |s0 | < 1
2

√
N and kk0 �= 0. (60)

Using this let us prove that k(n0,m0, s0) ∈ G if and only if k = k0. If k = k0, then
by (59) we have (n1,m1, s1) = (n,m, s) = b ∈ G. Now we prove that if k �= k0, then
c = k(n0,m0, s0) /∈ G. Suppose at least one of the inequalities

|kn0 | > 1
2

√
N, |km0 | > 1

2

√
N, |ks0 | > 1

2

√
N (61)

holds. Then using (60), the definitions of C(
√

N) and B(N,M, S), and taking into account
that N,M, and S are the prime numbers, we see that

c = k(n0,m0, s0) /∈ C(
√

N) ∪ B(N,M, S),

and hence c /∈ G. Now suppose that all the inequalities in (61) do not hold. Then using (57),
(59), (60) and the assumption k �= k0, one can easily verify that

−N + n − kn0 �= 0,±N; km0 �= 0,±M; j − ks0 �= 0,±S; j − ks0 >
√

N.

These relations and the definitions of C(
√

N) and B(N,M, S) imply that

a − c = a − k(n0,m0, s0) = (−N + n − kn0,−km0, j − ks0) /∈ C(
√

N) ∪ B(N,M, S),

which means that c /∈ G (see the definition of G in proposition 2). Hence, it is proved that
if k �= k0, then (n1,m1, s1) /∈ G. Thus, in Case 1, the inclusion c ∈ G implies the equality
c = b.

Case 2. (ms1 − sm1) �= 0. Then it follows from (58) that

(ms1 − sm1) = pj, (62)
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where p is a nonzero integer, since j is a prime number satisfying j > N − n (see (57)). The
formulae (62) and (58) imply that

(n − N)p = mn1 − nm1. (63)

Using (62) and (57) one can readily verify that at least one of the inequalities

|m1 |>
√

N, |s1 |>
√

N (64)

holds. If the first inequality of (64) holds, then

c = (n1,m1, s1) /∈ C(
√

N), a − c = (−N + n − n1,−m1, j − s1) /∈ C(
√

N)

and hence c /∈ G.
Now assume that | s1 |> √

N and | m1 |� √
N. Then c = (n1,m1, s1) /∈ C(

√
N).

Therefore the relation c ∈ G and the definition of G give

a − c = (−N + n − n1,−m1, j − s1) ∈ C(
√

N).

Using this, the definition of C(
√

N) and (57), we obtain

|−N − n1 |<
√

N, 0 <|m1 |<
√

N, |j − s1 |<
√

N. (65)

Since c ∈ G, we have c ∈ C(
√

N) ∪ B(N,M, S). On the other hand c /∈ C(
√

N). Hence
c = (n1,m1, s1) ∈ B(N,M, S), that is, at least one of the following inclusions holds

n1 ∈ {0, N,−N}, m1 ∈ {0,M,−M}, s1 ∈ {0, S,−S}.
This with (65) and (55) implies that n1 = −N. Using this in (63), we get

N(p − m) = n(p + m1). (66)

We assumed that |m1 | �√
N. Besides, by (57) we have |m | � √

N, |n | � √
N. From these

inequalities and (66) one can easily conclude that |p+m1 |< N. Thus, N is a prime number and
is greater than |n | and |p + m1 | . Therefore from (66) we obtain that p + m1 = 0, p −m = 0,

and hence p = m = −m1. Using this in (62), we obtain

(ms1 + sm) = mj, s1 = j − s, c = (n1,m1, s1) = (−N,−m, j − s) = a − b.

Thus, we proved that any element c of the set G is either b (see Case 1) or a − b. Hence
G ⊂ {b, a − b} and (56) is proved.

Now it follows from (56) that the invariant (53) has the form

2Rez(−a)g(a, b)z(a − b)z(b)). (67)

Clearly, there exist two numbers j1 and j2 such that they satisfy the conditions of j and

〈(−N + n, 0, j1), (n,m, s)〉 �= 0, 〈(−N + n, 0, j1), (n,m, s)〉 �= 0,

which implies that the multiplicand g(a, b) in (67) for a = (−N + n, 0, ji), where i = 1, 2,

is not zero. Hence (67) gives the invariants

Re(z(−(−N + n, 0, ji))z(−N,−m, ji − s)z(n,m, s))), (68)

where z(−(−N + n, 0, ji)) and z(−N,−m, ji − s) for i = 1, 2 are known (see theorems 4
and 5). By lemma 1 the invariants (68) give the Fourier coefficient z(n,m, s) under some zero
measure conditions in the sense of remark 1. �

Thus, we considered the set of the polynomials of the form

p(x) =
∑

a∈B(N,M,S)∪C(
√

N)

z(a)ei〈a,x〉 (69)
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(see conditions 1 and 2, and theorems 4–6), where B(N,M, S) and C(
√

N) are as defined in
section 1 and in condition 2, respectively, and z(a) �= 0. By E(N,M, S) denote the subspace
of L2(F ) generated by functions ei〈a,x〉 for a ∈ (B(N,M, S) ∪ C(

√
N)). Let D(N,M, S)

be the set of all polynomial of the form (69) satisfying the zero measure conditions, in the
sense of remark 1, used in the proof of theorems 3–6. Due to remark 1, the set D(N,M, S)

is obtained from E(N,M, S) by eliminating the sets whose n-dimensional measure is zero,
where n is the number of the elements of B(N,M, S)∪C(

√
N). Therefore, for every positive

ε and for each fN ∈ E(N,M, S) the ball

{h ∈ E(N,M, S) : sup |h(x) − fN(x) | < ε}
contains an element pN of D(N,M, S), that is,

sup
x∈F

|pN(x) − fN(x) | < ε. (70)

Now consider a triple sequence {(Nk,Mk, Sk)} such that for all k the triple (Nk,Mk, Sk)

satisfies the conditions which are satisfied for (N,M, S) (see condition 1) and Nk → ∞ as
k → ∞. Thus, Nk,Mk, Sk are the prime numbers satisfying

Mk > 2Nk, Sk > 2Mk, N1 � 1, lim
k→∞

Nk = ∞. (71)

Denote by D(Nk,Mk, Sk) the set obtained from D(N,M, S) by substitution (Nk,Mk, Sk) for
(N,M, S). Let

D = ∪∞
k=1D(Nk,Mk, Sk). (72)

Theorem 7.

(a) The set D is dense in Ws
2 (F ), where s > 3, in C

∞-topology.
(b) The invariants (2)–(4) determine constructively and uniquely, modulo inversion and

translation (6), the potentials q of the set D.

Proof.

(a) Note that f ∈ Ws
2 (F ) means that

f (x) =
∑
a∈�

(f, ei〈a,x〉)ei〈a,x〉,
∑
a∈�

|(f, ei〈a,x〉) |2 (1+ |a |2s) < ∞. (73)

Without loss of generality, it can be assumed that (f, 1) = 0. If s > 3, then

sup
x∈F

∣∣∣∣∣∣
∑

a∈R(
√

N)

(f, ei〈a,x〉)ei〈a,x〉

∣∣∣∣∣∣ �
∑

a∈R(
√

N)

|(f, ei〈a,x〉) | = O((
√

N)−(s−3)), (74)

where R(
√

N) = {
a ∈ � :| a | � 1

2

√
N

}
. It follows from the definitions of B(N,M, S)

and C(
√

N) that

�\(B(N,M, S) ∪ C(
√

N) ∪ {(0, 0, 0)}) ⊂ R(
√

N). (75)

By (74) and (75) f (x) has an orthogonal decomposition f (x) = fN(x) + rN(x), where

fN(x) =
∑

a∈(B(N,M,S)∪C(
√

N)

(f, ei〈a,x〉)ei〈a,x〉, sup
x∈F

|rN(x) |= O((
√

N)−(s−3)), (76)

fN ∈ E(N,M, S). Therefore, for any ε > 0 there exists N such that

sup |f (x) − fN(x) | < ε. (77)
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From (70) and (77) we obtain that for any f ∈ Ws
2 (F ) and for any ε > 0 there exist N

and pN(x) ∈ D(N,M, S) such that

sup
x∈F

|f (x) − pN(x) | < 2ε,

which means that D is dense in Ws
2 (F ) in the C

∞-topology.
(b) Let q be an element of D. Since the vector (Nk, 1, 0) is a visible element of Z

3 for each
Nk , the invariants

‖q(Nk,1,0)‖
for k = 1, 2, . . . (see (2)) are given. By the definition of D, the number

k =: {max s : ‖q(Ns,1,0)‖ �= 0}
is finite. Therefore q belongs to the set D(Nk,Mk, Sk). The statement of theorem 7(b)

for this set follows from the definition of D(N,M, S) and from theorems 4–6. �
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